Search This Blog


Tuesday, 31 March 2015

The Acute Porphyrias, and other Contraindications for Very Low Carbohydrate Diets and Fasting.

From the Department of Due Diligence...
Contraindications for Ketogenic and Very Low Carbohydrate Diets

This list of medical conditions which may cause adverse reactions to ketogenic diets or fasting may not be complete and is intended to be updated as necessary.

Acute Intermittent Porphyria and Acute Variegate Porphyria

The possibility of uncovering undiagnosed cases of these related disorders should always be borne in mind by those prescribing or experimenting with carbohydrate-restricted diets or fasting.

Acute Intermittent Porphyria (AIP) - Genetic disorder of incomplete heme synthesis due to deficiency of porphobilinogen deaminase with incidence 5-10 per 100,000.

 Acute Variegated Porphyria (AVP) - Genetic disorder reducing heme synthesis by 50% due to mutation of protoporphyrinogen oxidase, with incidence 1 in 300 (South Africa) to 1 in 75,000 (Finland).

True incidence may be greater as some cases are only diagnosed when triggered by low-carbohydrate diets or fasting.

- Some new cases of AIP and AVP were diagnosed at the height of Atkins diet popularity in the 1970s and this can be expected to recur during current popularity of LCHF diets.[1]

Symptoms may include:

Abdominal pain which is severe and poorly localized (most common, 95% of patients experience)
Urinary symptoms (Dysuria, urinary retention/incontinence or dark urine)
(Note: urine turning dark after exposure to sunlight or UV light is useful diagnostic sign)
Peripheral neuropathy (patchy numbness and paresthesias)
Proximal motor weakness (usually starting in upper extremities which can progress to include respiratory impairment and death)
Autonomic nervous system involvement (circulating catecholamine levels are increased, may see tachycardia, hypertension, sweating, restlessness and tremor)
Neuropsychiatric symptoms (anxiety, agitation, hallucination, hysteria, delirium, depression)
Electrolyte abnormalities (Hyponatremia may be due to hypothalamic involvement leading to SIADH that may lead to seizures).
AIP can also present as acute pancreatitis [2, 3, 4]
Rash is not typically seen in AIP, but in AVP skin can be overly sensitive to sunlight. Areas of skin exposed to the sun develop severe blistering, scarring, changes in pigmentation, and increased hair growth. Exposed skin becomes fragile and is easily damaged.

Patients with acute porphyrias are commonly misdiagnosed with psychiatric diseases. Subsequent treatment with anti-psychotics increases the accumulation of porphobilinogen, thus aggravating the disease enough that it may prove fatal.
10% glucose infusion or high-carbohydrate diet used in treatment. Hematin and heme arginate can shorten attacks and reduce the intensity of an attack but are not without side effects [5]
Carbohydrate restriction is not a factor in the common porphyria, porphyria cutanea tarda.

Question: does dietary heme as well as dietary glucose play a protective role in AIP and AVP?

[Edit: a first hand account of what it is like to have an undiagnosed porphyria -
Note it can be triggered by many common diet components including in this case corn fed to animals.
Beta carotene is an effective treatment for photosensitivity of acute variegate porphyria - 

Systemic primary carnitine deficiency (SPCD) [6]

This syndrome, and others below, is almost certain to be diagnosed in infancy.
- also known as carnitine uptake defect, carnitine transporter deficiency (CTD) or systemic carnitine deficiency
- an inborn error of fatty acid transport caused by a defect in the transporter responsible for moving carnitine across the plasma membrane.
- can be treated with high-dose l-carnitine supplementation
- although it is usually thought that MCTs do not require carnitine transport for beta-oxidation, tests with affected individuals have shown that MCTs are poorly metabolised in SPCD [7]
- Incidence: 1 per 100,000 except in Faroe Islands 1 per 1,000.

Other disorders that impair fatty acid oxidation and ketogenesis

A person with one of these disorders will have impaired metabolism of fatty acids when fasting, and will not produce ketones. Unless the condition is one treatable with l-carnitine, they may require a low-fat, high-carbohydrate diet.
Paradoxically a CPT1A defect is highly preserved in Arctic populations who evolved on a high-fat diet – this mutation suppresses ketosis and instead increases gluconeogenesis and heat generated from uncoupled fatty acid oxidation.[8]  The population of the Faroe Islands also traditionally ate a low-carbohydrate, high seafood diet; this would seem to suggest that CPT1A and perhaps SPCD defects are not true contraindications for such a diet.

Incomplete list of various fatty-acid metabolism disorders [9]

Carnitine Transporter Defect
Carnitine-Acylcarnitine Translocase (CACT) Deficiency
Carnitine Palmitoyl Transferase I & II (CPT I & II) Deficiency
2,4 Dienoyl-CoA Reductase Deficiency
Electron Transfer Flavoprotein (ETF) Dehydrogenase Deficiency (GAII & MADD)
3-Hydroxy-3 Methylglutaryl-CoA Lyase (HMG) Deficiency
Very long-chain acyl-coenzyme A dehydrogenase deficiency (VLCAD deficiency)
Long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency (LCHAD deficiency)
Medium-chain acyl-coenzyme A dehydrogenase deficiency (MCAD deficiency)
Short-chain acyl-coenzyme A dehydrogenase deficiency (SCAD deficiency)
3-hydroxyacyl-coenzyme A dehydrogenase deficiency (M/SCHAD deficiency)

“Inborn errors in the enzymes involved in lipid metabolism: from mitochondrial membrane long-chain fatty acids transport mechanism to beta-oxidation and Krebs cycle could be potentially fatal during fasting or KDs. Thus, carnitine deficiency, carnitine palmitoyltransferase (CPT) I or II deficiency, carnitine translocase deficiency, b-oxidation defects, or pyruvate carboxylase deficiency should be screened before initiating the KD treatment.”[10] 

Note:  The most frequently occurring mitochondrial respiratory disorders impair glucose, rather than fatty acid oxidation and are identified as indications for ketogenic diets.[11]

[1] Acute variegate porphyria following a Scarsdale Gourmet Diet. Quiroz-Kendall E, Wilson FA, King LE Jr. J Am Acad Dermatol. 1983 Jan;8(1):46-9. PMID: 682680

[2] Acute intermittent porphyria presenting as acute pancreatitis and posterior reversible encephalopathy syndrome. Shen FC, Hsieh CH, Huang CR, et al. Acta Neurol Taiwan. 2008 Sep;17(3):177-83.

[3] A case of acute intermittent porphyria with acute pancreatitis. Shiraki K, Matsumoto H, Masuda T, et al. Gastroenterol Jpn. 1991 Feb;26(1):90-4.

[4] Acute intermittent porphyria with relapsing acute pancreatitis and unconjugated hyperbilirubinemia without overt hemolysis. Kobza K, Gyr K, Neuhaus K, Gudat F. Gastroenterology. 1976 Sep;71(3):494-6.

[5] Adapted from Wikipedia, retrieved 14/11/2014

[6] Systemic Primary Carnitine Deficiency. El-Hattab A W.

[7] Medium-chain triglyceride loading test in carnitine-acylcarnitine translocase deficiency: insights on treatment. Parini R. et al. J Inherit Metab Dis. 1999 Aug;22(6):733-9. PMID: 10472533

[8] A Selective Sweep on a Deleterious Mutation in CPT1A in Arctic Populations. Clemente F. J et al. American Journal of Human Genetics Volume 95, Issue 5, p584–589, 6 November 2014

[9] retrieved from Wikipedia 14/11/2014

[10] Ketogenic Diet in Neuromuscular and Neurodegenerative Diseases. Paoli, A. et al. BioMed Research International Volume 2014 (2014), Article ID 474296, 10 pages

[11] Safe and Effective Use of the Ketogenic Diet in Children with Epilepsy and Mitochondrial Respiratory Chain Complex Defects. Kang, H-C et al. 2006. Epilepsia, DOI: 10.1111/j.1528-1167.2006.00906.x

Compiled by George Henderson, Research Assistant, Human Potential Centre, Auckland University of Technology.
Any suggestions to improve this resource should be sent to the author at

Friday, 27 March 2015

How To Live Longer, by A. P. Herbert

This poem by A. P. Herbert was published in The Punch Guide to Good Living, under the initials A. P. H. The collection was edited by William Davis and published in 1973, and the selections appear to date from the 60's and early 70's.

                                    HOW TO LIVE LONGER

                            ATTEND. I do not often sing to you

To make you healthier, but now I do.
            The word coronary does not come down
             From cor, the heart, but from corona, crown;
         And I for one pronounce it in this way
       Whatever medical young men might say.
         Thus can the poet get the modern curse
Coronary thrombosis, into verse.
        "Modern," I say. This fashionable bane
             Is not described by Shakespeare - or by Jane.
                It's not a thing those knights in armour had,
Nor is it mentioned in the Iliad.
It is, as many other evils are,
Almost coeval with the motor-car.
But now, they say, it is the reason why
One-fifth of those who die in Britain die.
There are two schools of thought. One tells you flat
It comes of taking too much animal fat.
This breeds Cholesterol; and so they damn
Such lights of life as butter, milk and ham.
The other school insists, with my applause,
That these nutritious foods are not the cause.
They know of Africans who eat and drink
Fats all the time - but always in the pink:
And when they die, which is extremely rare,
You'll find that no Cholesterol is there.
The reason is, these enviable men
Take healthy exercise from 10 to 10.
But we, the best and brightest in the town.
Spend nearly all the daylight sitting down.
Not Sloth, nor Indolence have damped our fires,
But the soft slogging that Success requires.
We sit to work in motor, bus, or train,
Sit at our work, and, homing, sit again:
The "active" man, forever in a fuss,
Must do more sitting than the rest of us.
The more he telephones the more he sits,
Yet exercises nothing but his wits.
At golf they use the little legs no doubt,
But other men must cart the clubs about.
Tycoon or Clerk, accept the same prognosis -
You're heading for coronary thrombosis.
Be your own caddy; be afraid of chairs;
Ignore that lift and saunter up the stairs.
Do not be jet whizz over to Quebec;
But go by ship and march around the deck.
And no retiring to "a life of ease" -
For there's the certainty of heart disease.
It will be best not only for your soul
To weed the garden and bring in the coal.
And pray each evening for a transport strike -
Thus you may live as long as you would like.

                                                                              - A. P. H.

(The Old Humour)

(The New Humour)

Tuesday, 24 March 2015

TG/HDL ratio trumps LDL in untreated patients in the lipid lowering drug trials.

Ivor Cummins, bless him, found this treasure trove of data and broadcast it first on his Fat Emperor blog.
I've decided to write about it here because Ivor, in his magpie style, has scooped it up and dumped it where all can see, with a suitable explanation for those already in the know, but I think it will benefit from additional commentary.

Diet studies show LCHF is especially good for lowering fasting triglycerides and raising HDL, improving the TG/HDL ratio. Other diets are better for lowering LDL.
These are called surrogate endpoints; people don't usually die during weight loss trials (fat modification trials, usually with bigger numbers, are another story). If the diet lowers a "bad" marker or raises a "good" one, that is, markers such as lipids, blood pressure, BMI or HbA1c that are clearly associated with risk and easy to measure, that counts as success. These trials are too difficult and expensive to take much further than that (e.g. till people start dying).

The problem with this approach was vividly and disastrously demonstrated by the US Navy during World War Two.
If you're a US submariner firing a torpedo at a Japanese ship using a contact detonator and a shallow depth setting so it won't miss by running under the target, you'll most likely put a hole in that ship if you hit it, but you may not cause enough structural damage to sink it, and in underwater warfare you might not get a second shot (the Imperial Japanese Navy didn't really have this problem as their torpedoes were bigger and faster than the US equivalent).
The best way to optimize kills is to set the torpedoes to run deep, then explode them using a magnetic trigger that's detonated by passing under the ship's magnetic field. The consequent increased pressure from a proximal explosion in deep water will do more damage and hopefully break the ships back, allowing more ships to be sunk with the limited torpedo supply a submarine can carry on a long Pacific cruise. That's the theory, and the magnetic trigger was developed for the Mark 14 torpedo. Submariners were ordered to use it instead of the contact fuse.
Torpedo after torpedo fired at carefully set-up Japanese targets failed to explode. Boats that would later in the war devastate the Japanese merchant marine and Navy came back from patrol empty handed, their officers accused of cowardice or incompetence. The technology isn't flawed, you're just doing it wrong. The tide was eventually turned by submarine captains breaking orders, removing the magnetic triggers and changing the depth settings, to a predictable, indeed familiar, chorus of outrage and threats.
The Mk 14 torpedo still wasn't perfect (the contact trigger didn't work if it hit the target full-on, the depth setting mechanism was wonky, and so on) but the Japanese started to lose tonnage and the war.
The problem was that the expensive Mk 14 torpedo was developed during the Great Depression by a Navy operating on a minute budget. Habits of parsimony thus learned were continued into wartime.
The Mk 14 torpedo was never tested to detonation in any trial. If it ran deep enough under the dummy targets, and it had a magnetic trigger attached, or if it hit the target with a contact trigger attached, the trial was counted as a success.
In medicine this is called a surrogate endpoint.
And people are rightly sceptical about surrogate endpoints. Any line of evidence that gives new information about their reliability as predictors of death and disease is always welcome.

The evidence Ivor found concerns 3 lipid markers at baseline. They're not products of an intervention; they relate to diet, genetics, and metabolic health.
LDL, as we know, is raised by some of the saturated fats and lowered when these are replaced by other sources of energy.
TG is elevated (except in very low fat diets) in response to dietary carbohydrate.
HDL is raised by the same saturated fats that raise LDL, and is lowered by chronically elevated insulin levels such as we will see in insulin resistance and the early-to-middle phases of type 2 diabetes.
Someone who is metabolically healthy but eating a high-carbohydrate diet will have high TG, but because their insulin level is normal their HDL will not be depressed, thus the TG/HDL ratio will tend to stay in the normal range. In someone who is hyperinsulinaemic, TG on a high-carbohydrate diet may be even higher, and HDL will be depressed, creating an unfavourable TG/HDL ratio.
Excess insulin (or excess alcohol) will also increase production of unhelpful HDL subtypes, and high carbohydrate will make the LDL subtypes more atherogenic.
Dietary carbohydrate is thus the driver of this type of dyslipidemia, but is it necessarily worse than the high-LDL dyslipidemia that statins target?

The evidence from the trials:
The first set of graph is from a fibrate trial. Fibrates mainly lower TG/HDL, plus have nasty side effects. The black bars are the people who didn't get the drugs. That's who we're interested in in all these papers. HDL (cut-off 1.08) and TG (cut-off 2.3) correlate strongly with events. LDL (cut-off 5 - very generous!) is barely significant.

The second set of graphs, from the same trial, shows that high TG is a lesser risk factor in people with higher HDL, and that a high LDL/HDL ratio is especially bad if you have high TG. Despite the lower white bars everywhere (those treated with gemfibrozil had fewer cardiac events) "there was no difference between the [treated and untreated] groups in the total death rate."

The third graph, from a 2013 statin trial, shows that people in the highest quartile for HDL who don't get statins (which did work for others) but get placebo instead do better than anyone taking statins.

I also found this drug and non-drug study: note cut-off for LDL is now half what it was in the Gemfibrozil study. This shows how much fashions can change in 25 years, but makes no difference to the results.

Low plasma HDL-c, a vascular risk factor in high risk patients independent of LDL-c.
During a median follow up of 3.3 (range 0.1-9.5) years, a total of 465 first new events occurred. Compared with the lowest quintile, the upper quintile of HDL-c levels was associated with a lower risk for new events; Hazard Ratio 0.61 (95% CI 0.43-0.86) irrespective of the localisation of vascular disease and use of lipid-lowering medication. Higher HDL-c levels were associated with comparably lower risks for vascular events in patients with LDL-c levels above and below 2.5 mmol L(-1) (P-values for interaction > 0.05).
Patients with various clinical manifestations of vascular diseases in the highest HDL-c quintile have a lower risk for vascular events compared with patients in the lowest HDL-c quintile. Further, the current results expand the evidence by showing that also in a cohort of patients with various localisations of clinical evident vascular disease, in which statins were widely used, higher HDL-c levels confer a lower risk for developing new vascular events, irrespective of the localisation of vascular disease, use of lipid-lowering medication and plasma LDL-c concentration.

And this:

HDL Cholesterol, Very Low Levels of LDL Cholesterol, and Cardiovascular Events

I pulled these up in a very short search, but without cherry picking - that last example is a less perfect example of the HDL being protective genre, but then everyone in it was taking a statin. Which lowers insulin, according to that latest Finnish "statins cause diabetes" paper. Unfortunately without lowering blood glucose and HbA1c.

I wonder what intervention would naturally lower insulin, fasting glucose, HbA1c, and fasting TG, while promoting higher HDL?

Limitations - it is possible (I don't have time to follow this up) that participants in some of the statin trials were excluded if LDL measures were extremely high at baseline. The first study, however, was a primary prevention trial that did include all degrees of dyslipidaemia.
- Surrogate endpoints will never be perfect, but people like NICE are dosing millions on the basis that LDL is especially meaningful. If you're going to play that game, get it right.

[Edit P.S. 27/03/15] - makes sense of these stunning charts, from

Friday, 6 March 2015

What, exactly, is the Dietary Guidelines for Americans Committee's case against saturated fat?

[Edit 7/04/2015]

This analysis of the observational evidence cited in support of the US Dietary Guidelines recommendation to limit saturated fat to 10% or less replaces the version I posted earlier, but I have kept that version and you can still read it lower down this post.

Dietary Guidelines for Americans Committee Report 2015

Critique of the evidence for restricting saturated fat, with emphasis on the evidence from meta-analysis (including prospective cohort studies and RCTs) of substitution of saturated fat with other sources of energy.

1) The claim that the evidence for substituting PUFA for SFA is “strong and consistent”, which refers to the first two Bradford Hill criteria, is incorrect.

"Strong and consistent evidence from RCTs and statistical modeling in prospective cohort studies shows that replacing SFA with PUFA reduces the risk of CVD events and coronary mortality.
For every 1 percent of energy intake from SFA replaced with PUFA, incidence of CHD is reduced by 2 to 3 percent."
(Part D. Chapter 6: Cross-Cutting Topics of Public Health Importance. Lines 603-606)

Bradford Hill defined a strong association as having a factor of 2 or more; the association between CHD mortality and PUFA for SFA substitution in meta-analysis is, at best, approximately 0.80. The claim of consistency is also not accurate; meta-analysis of this question pools studies which have shown both positive and negative associations between PUFA and CHD mortality and/or events. The existence of more than one study, within each meta-analysis, in which increasing PUFA and decreasing SFA was associated with increased CHD, refutes the claim of consistency.

2) The method of sub-group meta-analysis which was given particular emphasis by the Committee is less than 6 years old and its interpretation is still an open question.

“Regarding saturated fat, Question 5 was answered using the NHLBI systematic review and related AHA/ACC Guideline on Lifestyle Management to Reduce Cardiovascular Risk, which focused on randomized controlled trials (RCTs), as well as existing SRs (systematic reviews) and MA (meta-analysis) addressing this question published in peer-reviewed literature between January 2009 and August 2014.
Particular emphasis was placed on reviews that examined the macronutrient replacement for saturated fat.”
(Part D. Chapter 6: Cross-Cutting Topics of Public Health Importance. Lines 84-89)

As noted by the Committee, meta-analysis of prospective cohort studies and RCTs shows no independent association between SFA and CHD mortality; the method of sub-group meta-analysis which instead compares stepwise substitutions of PUFA for other nutrients dates from the 2009 study by Jakobsen et al.[1] The post-script of the Skeaff and Miller meta-analysis, 2009, testifies to the novelty of the Jakobsen et al. methodology, and how it was welcomed by two experienced epidemiologists who could not within their own analysis find evidence to support their anti-SFA position.[2] PUFAs are essential nutrients with countless bioactive metabolites, and are not just energy sources, and those energy sources that lack essentiality – SFA, MUFA, and CHO – seem to all stand in much the same relation to PUFA in these meta-analyses. The results of these meta-analyses may reflect both the essentiality and functionality of PUFA, and the effect of a reduction in energy from other sources, rather than the harmfulness of these energy sources per se.

3) Notwithstanding the 2 previous points, the evidence from meta-analysis of energy substitution, taken at face value, does not support a limit on SFA.

“Farvid et al. found dietary LA intake is inversely associated with CHD risk in a dose-response manner: when comparing the highest to the lowest category of intake, LA was associated with a 15 percent lower risk of CHD events (pooled RR = 0.85; 95% CI = 0.78 to 0.92; I²=35.5%) and a 21% lower risk of CHD deaths (pooled RR = 0.79; 95% CI = 0.71 to 0.89; I²=0.0%). A 5 percent of energy increment in LA intake replacing energy from SFA intake was associated with a 9 percent lower risk of CHD events (RR = 0.91; 95% CI = 0.86 to 0.96) and a 13 percent lower risk of CHD deaths (RR = 0.87; 95% CI = 0.82 to 0.94).”
(Part D. Chapter 6: Cross-Cutting Topics of Public Health Importance. Lines 577-589)

The Committee’s report quotes Farvid et al. selectively (above). The Farvid et al. meta-analysis found that 5 percent energy intake from LA replacing the same amount of energy from carbohydrates was associated with a 13% reduction in CHD mortality.[3] This is exactly the same as the reduction in CHD mortality associated with 5% energy intake from LA replacing the same amount of energy from SFA. A similar conclusion can be drawn from Jakobsen et al. and Mozaffarian et al. with regard to total PUFA (in fact this exact point – that PUFA can be substituted for either SFA or carbohydrate - is made by Dariush Mozaffarian in presentations).[4]
There are two additional notes relating to the substitution meta-analyses so far; the substitution of PUFA for carbohydrate is for all carbohydrate, a mixture of refined and unrefined, and the substitution of PUFA for CHO is slightly superior to substitution of PUFA for SFA with regard to some endpoints.
The Farvid et al. analysis is not cited as evidence in the section relating to carbohydrate. If energy substitution sub-group meta-analysis is considered meaningful evidence in favour of SFA restriction, why is it not discussed in the context of carbohydrate?

4) There is no discussion of an upper limit to benefit from PUFA.

The current average intake of LA by Americans is over 7% of energy, and this would likely be higher were it not for the restrictions on total fat recommended by previous DGA Committees. The average intake of SFA is, at 11%, close to the recommendation of 10% or less. A 5 percent substitution of energy from LA for energy for SFA would result in an LA intake of over 12% and a SFA intake of 6%.
There are countries in the world that have long had similar fat intakes, and these are the countries of the former Soviet Union, where sunflower oil has been the main cooking fat since Tsarist times.
These countries have some of the highest incidences of CHD mortality in the world.[5] In Poland, a former satellite of the Soviet Union, the replacement of sunflower oil with rapeseed oil was followed by a sharp reduction in coronary mortality. Although the abstract of the epidemiological study that reports this change suggests this effect has been due to an increased intake of ALA, the change also saw a significant reduction (estimated reduced by one half to two thirds) of the total PUFA in cooking oil and of its LA content (reduced by two thirds or more). This study was co-authored by Walter Willet of Harvard School of Public Health, who also co-authored the Farvid et al. and Jakobsen et al. meta-analyses.[6]
The suggestion is that there may be evidence relating to the upper limit of LA safety available, and that this is a subject for discussion, not only with regard to CHD mortality but also with regard to non-CHD and all-cause mortality.

5) There is no evidence of a benefit from fat substitution on all-cause mortality.

If substitution of PUFA for saturated fat reduces CHD without adverse effects on other outcomes, we would expect overall mortality to be reduced. Death is measured with less error than any other disease-specific outcomes. Focus on overall mortality avoids the risk of concluding that an intervention improves one endpoint, but, in reality, is offset by harm to another. For example, a treatment may reduce CHD but increase cancer incidence, so that the effect on overall mortality is neutral. This is possible in those meta-analyses of energy substitution where only CHD endpoints are reported.[7] The 2012 Cochrane review by Hooper et al., of randomised studies designed to test the hypothesis that saturated fat influences CVD, showed no association between treatment arm and overall mortality (pooled relative risk 0.98, 95%CI: 0.93–1.04, 71,790 participants, 4292 deaths). The analysis by Mozaffarian et al. found discordance between CHD mortality (RR 0.80) and total mortality (RR 0.98, non-significant). The question of whether the reduction in CHD mortality associated with substitution of energy from PUFA for an equivalent amount of energy from SFA is also associated with an increase in non-CHD mortality from all causes should be resolved.
The Government may not have a mandate for decreasing the rate of morbidity and mortality from one disease by a recommendation that increases morbidity and mortality from other causes; the evidence for, and the legal and ethical implications of this question should be part of the discussion.

6) The explanation given for the lack of benefit from substituting MUFA for SFA in meta-analysis is not supported by evidence and amounts to special pleading.

“Evidence is limited regarding whether replacing SFA with MUFA confers overall CVD (or CVD endpoint) benefits. One reason is that the main sources of MUFA in a typical American diet are animal fat, and because of the co-occurrence of SFA and MUFA in foods makes it difficult to tease out the independent association of MUFA with CVD.
However, evidence from RCTs and prospective studies has demonstrated benefits of plant sources of monounsaturated fats, such as olive oil and nuts on CVD risk.”
(Part D. Chapter 6: Cross-Cutting Topics of Public Health Importance. Lines 617-621)

The use of “one reason” and “because of” incorrectly implies that the claim has been tested. These explanations are not given in the meta-analyses of Jakobsen et al. or Mozaffarian et al. which found a lack of evidence of benefit for replacing SFA with MUFA, but were first proposed as unsupported speculation in Martijn Katan’s 2009 editorial response to the Jakobsen meta-analysis, which is more nuanced than the Committee’s statement above, including a discussion of the confounding factors associated with animal fat consumption.[9] That there are evident benefits from both olive oil and nuts, traditional foods which supply bioactive components other than fats, should not be interpreted as evidence that the results of meta-analysis of the cohort studies available are more unreliable with regard to MUFA than with regard to SFA, PUFA, or other macronutrients.

[1] Major types of dietary fat and risk of coronary heart disease: a pooled analysis of 11 cohort studies. Jakobsen MU1, O'Reilly EJ, Heitmann BL, et al. Am J Clin Nutr. 2009 May;89(5):1425-32. doi: 10.3945/ajcn.2008.27124.

[2] Dietary Fat and Coronary Heart Disease: Summary of Evidence from Prospective Cohort and Randomised Controlled Trials. Skeaff CM, Miller J. Ann Nutr Metab. 2009;55:173–201 DOI: 10.1159/000229002

[3] Dietary linoleic acid and risk of coronary heart disease: a systematic review and meta-analysis of prospective cohort studies. Farvid MS, Ding M, Pan A. et al. Circulation. 2014 Oct 28;130(18):1568-78. doi: 10.1161/CIRCULATIONAHA.114.010236.

[4] Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: a systematic review and meta-analysis of randomized controlled trials. Mozaffarian D, Micha R, Wallace S.  PLoS Med. 2010 Mar 23;7(3):e1000252. doi: 10.1371/journal.pmed.1000252.

[5] European Cardiovascular Disease Statistics: British Heart Foundation Health Promotion Research Group, 2008. Allender S, Scarborough P, Peto V, Rayner M.

[6] Rapid declines in coronary heart disease mortality in Eastern Europe are associated with increased consumption of oils rich in alpha-linolenic acid. Zatonski W, Campos H, Willett W. Eur J Epidemiol. 2008;23(1):3-10. Epub 2007 Oct 23.

[7] Chewing the saturated fat: should we or shouldn't we? Thornley S, Henderson G, Schofield G. N Z Med J. 2014 May 23;127(1394):94-6.

[8] Reduced or modified dietary fat for preventing cardiovascular disease. Hooper L, Summerbell CD, Thompson R, et al. Cochrane Database Syst Rev. 2011 Jul 6;(7):CD002137. doi: 10.1002/14651858.CD002137.pub2.

[9] Omega-6 polyunsaturated fatty acids and coronary heart disease. Katan MB. Am J Clin Nutr. May 2009 vol. 89 no. 5 1283-1284.doi: 10.3945/​ajcn.2009.27744. 

[original version]

The 2015 DGA committee has released a 571 page document which is meant to inform the next dietary guidelines.[1] Changes are that % fat vs carbohydrate is no longer prescribed and cholesterol is no longer subject to a limit.
However, the old limit of 10% energy from saturated fat remains in place. Low fat or no fat dairy is the only dairy you're allowed. Meat? However poor or aged you may be, you should eat less of it. Although consumption of added sugars and refined grains is of concern, it always takes secondary place to the established evils of saturated fat and sodium.
Most of the document is dreadfully written and repetitively displays a circular logic. The healthy diet pattern (there are three of these, but they are interchangeable) is healthy (because it outperforms, slightly, a dummy version of the SAD diet); the healthy diet pattern avoids certain foods; ergo, these foods are not part of a healthy diet (even though they weren't an important part of the dummy SAD diet either).
Thus the verdict is repeated many, many times, and the prosecution does its summing up, and only then is the evidence presented. I'm familiar with this evidence. It's presented dishonestly.

Firstly, there is a nolo contendere acceptance of the evidence that saturated fat does not independently correlate with cardiovascular disease.
Regarding saturated fat, Question 5 was answered using the NHLBI systematic review and related AHA/ACC Guideline on Lifestyle Management to Reduce Cardiovascular Risk, which focused on randomized controlled trials (RCTs), as well as existing SRs (systematic reviews) and MA (meta-analysis) addressing this question published in peer-reviewed literature between January 2009 and August 2014.
 Particular emphasis was placed on reviews that examined the macronutrient replacement for saturated fat.
The analysis of these pretends to be applying a truncated version of the Bradford Hill criteria. There's a good summary of these criteria and examples of their application here. There are 9 criteria and the first two are Strength of the Association and Consistency.

"Strong and consistent evidence from RCTs and statistical modeling in prospective cohort studies shows that replacing SFA with PUFA reduces the risk of CVD events and coronary mortality.
For every 1 percent of energy intake from SFA replaced with PUFA, incidence of CHD is reduced by 2 to 3 percent."
Part D. Chapter 6. page 16. (p451 doc)

Problem #1 - The evidence is not strong; in the meta-analysis by Dariush Mozaffarian et al., which is a meta-analysis supportive of substitution with PUFA, the average reduction in coronary mortality for 5% substitution was 0.80.[2]

Nowhere does the correlation attain the strength that Bradford Hill asked for, a factor of two or greater.
When the correlation is closest to one, as here, it can only be called weak. In fact it is even weaker than that, because the effect in primary prevention is not significant.
Emphasizing the benefits of replacement of saturated with polyunsaturated fats, Mozaffarian et al., 2010 found in a MA of 8 trials (13,614 participants with 1,042 CHD events) that modifying fat reduced the risk of myocardial infarction or coronary heart disease death (combined) by 19 percent (RR = 0.81; 95% CI = 0.70 to 0.95; p = 0.008), corresponding to 10 percent reduced CHD risk (RR = 0.90; 95% CI = 0.83 to 0.97) for each 5 percent energy of increased PUFA. This magnitude of effect is similar to that observed in the Cochrane MA. In secondary analyses restricted to CHD mortality events, the pooled RR was 0.80 (95% CI = 0.65 to 0.98). In subgroup analyses, the RR was greater in magnitude in the four trials in primary prevention populations but non-significant (24 percent reduction in CHD events) compared to a significant reduction of 16 percent in the four trials of secondary prevention populations.
From Ramsden et al. BMJ 2013 
Problem #2 - The evidence is not consistent, because there is more coronary mortality in some PUFA substitution studies, less in others, and no difference in others again.
You cannot use meta-studies as evidence of consistency!

The DGA committee also draw on the Harvard et al. meta-analysis by Farvid et al.[3]|
Consistent with the benefits of replacing SFA with PUFA for prevention of CHD shown in other studies, Farvid et al., 2014 conducted an SR and MA of prospective cohort studies of dietary linoleic acid (LA), which included 13 studies with 310,602 individuals and 12,479 total CHD events (5,882 CHD deaths). Farvid et al. found dietary LA intake is inversely associated with CHD risk in a dose-response manner: when comparing the highest to the lowest category of intake, LA was associated with a 15 percent lower risk of CHD events (pooled RR = 0.85; 95% CI = 0.78 to 0.92; I²=35.5%) and a 21% lower risk of CHD deaths (pooled RR = 0.79; 95% CI = 0.71 to 0.89; I²=0.0%). A 5 percent of energy increment in LA intake replacing energy from SFA intake was associated with a 9 percent lower risk of CHD events (RR = 0.91; 95% CI = 0.86 to 0.96) and a 13 percent lower risk of CHD deaths (RR = 0.87; 95% CI = 0.82 to 0.94).
Once again, the word "consistent" is abused. Individual studies are not consistent, and this is a meta-analysis (which is supposed to include all the relevant studies) so the concept of consistency does not apply. In what sense is an average consistent?

However an even larger deception is taking place in this selective quotation from Farvid et al., because that paper also concludes that a 
5 percent of energy increment in LA intake replacing energy from carbohydrate intake is associated with similar benefits as replacing SFA.
Every meta-analysis that tells you that there is no benefit from replacing SFA with CHO, but a benefit from replacing SFA with PUFA, is saying the same thing, but Farvid et al. finally spelled it out.

9 cohort studies evaluating substitution of LA for carbohydrate showed that substituting 5% energy intake from LA for carbohydrates lowered risk by about 10%. A slightly lower risk benefit was seen for substitution of LA for SFA.This systematic review and meta-analysis suggests that risk of CHD decreases with higher dietary LA intake, when replacing either carbohydrate or saturated fat.

As a third criticism, how plausible is this claim - "for every 1 percent of energy intake from SFA replaced with PUFA, incidence of CHD is reduced by 2 to 3 percent"? With no safe upper limit set or implied.

For every 1 percent? Is the reduction the same for the 1st% and the 20th%?* And what of the observation that higher PUFA % intakes (like lower SFA % intakes) tend to be reported by those under-reporting calories? Is the correlation the same for absolute intakes (grams/day)?How is the suggestion to be placed in context? The calculations begin at 1%E as LA, yet the average dietary intake of LA in the USA was over 7% in 1999.[4] Is the case against saturated fat now to be based on chasing a PUFA target that for all practical purposes has already been met?

The graphic from Farvid et al. above shows that there is less data above 6-7% LA and correlations become less reliable. As Ancel Keys would have predicted - dietary intake of LA above 7% is not a usual part of natural human diets, and the range of intakes in the 7 Countries study was 3-7%. 
We are still in the "weak" range of correlation, meaning there could always be another explanation for what we are seeing. And we do not have all the data. The countries of the former Soviet Union have very low SFA intakes (6-7%) and very high LA intakes (unknown, but sunflower oil is the main cooking fat), and these countries have some of the highest rates of CHD mortality in the world. If we had reliable cohort data from these countries, what then?
And what of the elephant in the room of PUFA celebration - the lack of any association with all-cause, age-adjusted mortality? If PUFA substitution prevents CHD deaths, and CHD deaths are a major part of all deaths, then PUFA substitution should reduce all deaths. If it doesn't, then either the reduction in CHD mortality is illusory, or PUFA (or something associated with it) is causing more death from other causes. It doesn't.[5] Well there is a small, non-significant reduction, and the theory is that if this were multiplied to infinity by more and more studies it would attain significance and be interpreted as saving thousands of lives. As long as the new studies didn't come from parts of the world like Azerbaijan and, well, most of the rest of the world. But that the idea that a tiny association magnified means anything in a world of uncertainty, unreliability, and alternative explanations (known and hidden confounders) is nothing but clutching at straws.
Has all this effort and expense and messing with peoples' lives only had the result of sweeping the problem of CHD under the carpet of death from other causes?

There is also the following curious passage on MUFA. Remember that the lipid hypothesis recommends replacing saturated with unsaturated fats.

Evidence is limited regarding whether replacing SFA with MUFA confers overall CVD (or CVD
endpoint) benefits. One reason is that the main sources of MUFA in a typical American diet are
animal fat, and because of the co-occurrence of SFA and MUFA in foods makes it difficult to
tease out the independent association of MUFA with CVD.
However, evidence from RCTs and prospective studies has demonstrated benefits of plant sources of monounsaturated fats, such as olive oil and nuts on CVD risk.

That's some special pleading. Suddenly the methods used to separate SFA and PUFA, which the argument has depended on so far, are not good enough to separate SFA and MUFA, because they do not give the desired results. (The use of the words "one reason" and "because" above implies that these explanations have been tested; they have not; they appear in the literature as speculations). Animal fats - pork, and especially chicken - are a major source of PUFA in the US diet. Canola and other high oleic oils are sources of MUFA.
Nuts and olive oil, real high-fat foods, do seem to show benefits that don't show up when MUFA alone is measured. MUFA has been a big disappointment to epidemiologists, it lowers cholesterol when substituted for SFA, but this is not associated with a reduction in coronary disease. So the bogey of animal fat is invoked, without much justification and without the whiff of a mechanism to explain why oleic acid from canola oil should differ from oleic acid from beef (after all, cholesterol has just been acquitted). 

I know anecdotal evidence  has low admissibility, but all evidence is evidence of something. All over the internet and print media people will tell you that eating a lot less carbohydrate and more fat, sometimes more saturated fat, has improved their lives and their health. Doctors are saying this about their patients too.
Where are the blogs where people rave about how replacing butter with margarine has fixed their health problems? Millions of people take statins - where are the stories from statin users about the improvements to their lives? You will find more negative stories from statin users online. You might find stories of improved cholesterol, but where is the increased vitality and reversal of obesity and type 2 diabetes? Oh, wait.
You might conclude from this that any association between improvements in cholesterol and improvements in health is not necessarily a linear or temporal one. There is perhaps stronger evidence for the idea that improvements in health are temporally associated with improvements in cholesterol.

The DGAC are a bunch of brainy people, familiar with the evidence (some of them anyway), presenting a summary of this evidence to non-specialists - the 
Secretaries of the U.S. Department of Health and Human Services (HHS) and the U.S. Department of Agriculture (USDA).
How honest is their case?
They present the observational evidence as being stronger than it is, and they suppress an important finding of this evidence which would contradict their saturated fat recommendation.
After all, if 7% PUFA is where the benefit lies (which is endlessly debateable and certainly not a case I'd personally want to make, especially in light of the all-cause mortality association), who eating either a standard American diet or one of the healthy "Healthy" DGA diets doesn't have a few % CHO to spare? And in that case, if you're willing to trade some sugar for some nuts, then where is the evidence against SFA? The observational evidence, weak though it was in terms of consistency and strength of association, just flew out the window.

Bye bye.

*Appendix 1

Walter Willet of Harvard, co-author of the Farvid et al. study, also put his name to this study, about a decline in CHD mortality in Eastern Europe where rapeseed oil has been substituted for sunflower oil.[6] Sunflower oil is about 44-75% PUFA, as LA, rapeseed oil supplies 15-30% PUFA, 15-20% LA.[7,8] This is evidence for the hypothesis that restricting PUFA or LA reduces CHD mortality.

Appendix 2

The following PUFA recommendations are listed on the website of the Linus Pauling Institute.

Upon request of the European Commission, the European Food Safety Authority (EFSA) proposed adequate intakes (AI) for the essential fatty acids LA and ALA, as well as the long-chain omega-3 fatty acids EPA and DHA (62). EFSA recommends an LA intake of 4% of total energy and an ALA intake of 0.5% of total energy; an AI of 250 mg/day is recommended for EPA plus DHA.
(note: this is about the average NZ intake)
The World Health Organization recommends an acceptable macronutrient distribution range (AMDR) for omega-6 fatty acid intake of 6-11% of energy and for omega-3 fatty acid intake of 0.5-2% of energy. Their AMDR for EPA plus DHA is 0.250-2 g/day (the upper limit applying to the secondary prevention of CHD).
(note - this requires use of seed oils and intensive fishing. The WHO are zealots for the diet-heart hypothesis).
The International Society for the Study of Fatty Acids and Lipids (ISSFAL) recommends for healthy adults an LA intake of 2% energy, ALA intake of 0.7% energy, and a minimum of 500 mg/day of EPA plus DHA for cardiovascular health.

Scientific Report of the 2015 Dietary Guidelines Advisory Committee. link
Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: a systematic review and meta-analysis of randomized controlled trials. Mozaffarian D, Micha R, Wallace S.  PLoS Med. 2010 Mar 23;7(3):e1000252. doi: 10.1371/journal.pmed.1000252.

Dietary linoleic acid and risk of coronary heart disease: a systematic review and meta-analysis of prospective cohort studies. Farvid MS, Ding M, Pan A. et al. Circulation. 2014 Oct 28;130(18):1568-78. doi: 10.1161/CIRCULATIONAHA.114.010236.

[4] Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. Blasbalg TL, Hibbeln
JR, Ramsden CE, et al. 
Am J Clin Nutr. 2011 May;93(5):950-62. doi: 10.3945/ajcn.110.006643. 

[5] Chewing the saturated fat: should we or shouldn’t we? Thornley S, Henderson G, Schofield G. NZMJ 23 May 2014, Vol 127 No 1394; ISSN 1175 8716

[6]  Rapid declines in coronary heart disease mortality in Eastern Europe are associated with increased consumption of oils rich in alpha-linolenic acid. Zatonski W1Campos HWillett WEur J Epidemiol. 2008;23(1):3-10. Epub 2007 Oct 23.


Chemical composition and stability of rapeseed oil produced from various cultivars grown in Lithuania. Dainora Gruzdienė, Edita Anelauskaitė.

Monday, 23 February 2015

Why the High-Fat Hep C Diet? Rationale and n=1 results.

I originally started this blog to publicise the hypothesis that a diet low in carbohydrate and linoleic acid, but high in saturated fat and long-chain PUFA, will inhibit HCV replication.

The blog header with the pig above is the abstract for this hypothesis.

I first worked this out in 2010 after reading Dr Atkins New Diet Revolution while studying HCV replication. The lipid patterns in low-carb dieters - low TG and VLDL, high HDL, normal or high LDL - are those associated with lower viral load and improved response to treatment in HCV cases.
The mechanics of HCV replication and infection support this link.

HCV inhibits PPAR-a, a ketogenic diet reverses this inhibition

I wrote a fairly comprehensive version of the hypothesis in 2012:

Recently I was sent a link to an article that cited this paper: and the hepatic lipid pathway as a potential treatment target. Bassendine MF, Sheridan DA , Felmlee DJ, et al. Journal of Hepatology 2011 vol. 55 j 1428–1440

This review compiles a great deal of supporting evidence regarding the interaction between HCV and lipids, and between lipids and HCV. The only thing missing is the role of carbohydrate. It mentions multiple lipid synthetic pathways as targets for indirect-acting antiviral drugs (IDAA), pathways which are also well documented as targets of low carbohydrate ketogenic diets, or of saturated fat in the diet (in the case of the LDL-receptor complex).

From 2012:
A little n=1 experimental data; 4 years ago (2008) my viral load was 400,000 units, now after 2 years of low carb dieting and intermittent mild ketosis (2012) it is 26,000.

Later in 2012:
Total Cholesterol:  6.7  H     
Triglyceride:          0.8         
HDL:                     1.63              (63.57)
LDL (calc.)            4.7   H    
Chol/HDL ratio:     4.1          

HCV viral load on this day (21st May 2012): 60,690 IU/mL (4.78 log)

Lipid panel from 07 Feb 2012, during ketogenic diet phase (non-fasting)

Total Cholesterol: 8.9   HH  (347.1)
Triglyceride:         1.3          (115.7)
HDL:                    1.65         (64.35)
LDL (calc):           6.7    H    (261.3)
Chol/HDL ratio:     5.4   H

HCV viral load on this day: 25,704 IU/mL (4.41 log)

From 2014:
On a personal note, I have started an 8-week trial of Sofosbuvir and GS-5816 (Vulcan). It is day 11 and it seems tolerable so far.
A pre-trial blood test on 22nd October was normal except for these counts:
AST 74
ALT 174

and viral load was 600,419 (log 5.78), counts consistent with the tests I've had done this last year.

But the day the trial started, 18th November, before my first dose, things were different:
AST 21

ALT 32
Viral load 27,167 (log 4.43)

The low viral load is easy to explain; I get a consistent 1 log drop (to 14,000-60,000*) when I try to eat very low carb (50g/day or lower) and an elevation to 400-600,000 when my carbohydrate intake is over 50g/day. When I ate very high carb (but took antioxidant supps) it was as high as it was on 22nd October. So for me the tipping point seems to be where ketosis begins, and other variations don't have much effect; it's an on/off switch, not a dial (and the name of that switch is PPAR-alpha).
[edit: though the very low scores are at ketogenic, or nearly so, carb intakes, the exact increase in carbohydrate needed to cause a significant increase in viral load seemed to vary]
(I do however, according to CAPSCAN elastography, have zero excess fat in my liver, which is an effect of low carb in general, as well as avoiding vegetable seed oils).

My belief is that my viral load was much higher than any of these counts previous to 2003. This was the year I started taking antioxidant supplements, eating a bit better (in a normal, confused "healthy eating" pattern), and using herbal antivirals like silybin. Prior to that I was seriously ill, and I believe that my viral load would have reflected my extra autoimmune symptoms, signs of liver failure, and elevated enzymes. Unfortunately in those days one didn't get a PCR unless one was considering donating one's body to interferon, which I was not.

* I don't seem to have a record of the date of the 14,000 VL reading, but will include it when I find it.

A very low carbohydrate ketogenic diet, without enough PUFA to lower LDL artificially, had a significant inhibitory effect on HCV viraemia in my case.
Effective DAA drugs for HCV infection are now available. There is a ~98% SVR rate at present. These drugs are expensive, they sometimes have side effects (though much less so than interferon + ribavirin), and interferon + ribavirin is still being used.
If my results are more generally applicable, VLCKD diet offers an adjunct therapy for patients with a high viral load, steatosis that relates to diet and lifestyle as well as HCV infection, or a need to postpone treatment. In people who oppose or cannot complete or afford treatment, it offers a way to manage the disease, and in particular to reverse the autoimmune syndromes caused by immune complexes when viraemia is excessive.

Friday, 20 February 2015

Gluconeogenesis Drives Ketogenesis - role of the Nutritional Prometheus.

In trying to explain the findings of Newburgh and Marsh*, and of Karl Petren, from 1923 that switching to a high fat, restricted protein, and very low carbohydrate diet - a ketogenic diet - suppresses diabetic ketoacidosis (DKA) in diabetics without access to insulin, I can't help noticing that gluconeogenesis is a driver of ketogenesis. DKA is a dehydrating syndrome characterized by hyperglycaemia, due in large part to runaway gluconeogenesis, plus levels of ketone bodies, much higher than those seen in starvation or nutritional ketosis, which result in a lethal acidosis. And excess glucose and excess ketones are linked metabolically.

Remember the old saw, that fat burns in a carbohydrate flame? Laugh all you like, but this is true. And it is even more true when the flame is taken away - when carbohydrate (glucose) is being stolen from mitochondrial metabolism. Gluconeogenesis involves a direct loss of oxaloacetate from the citric acid (Krebs, TCA) cycle. Without this oxaloacetate, the fat-burning flame sputters; the smoke that escapes from incomplete combustion is the ketone bodies. I'm not a chemist, but this seems to me a pretty certain way of interrupting the TCA cycle. And a very convenient one in evolutionary terms; at times when you need endogenous glucose, you can use a few extra ketones as well.

Pyruvate from glucose can supply acetyl-CoA or oxaloacetate, fatty acids can only supply acetyl-CoA, if there's no oxaloacetate acetyl-CoA can't be converted to citrate and is converted to ketone bodies instead (not shown).

[In Starvation] degradation of fatty acids in the liver proceeds more rapidly than usual, with augmented production of of acetoacetyl-CoA and acetyl-CoA and their products.
In addition there is a deficit of oxaloacetate and thus a decrease in formation of citrate.
The low level of oxaloacetate is further accentuated because it is being utilized for gluconeogenesis.
This further impairs operation of the citric acid cycle.

Ketosis incident to starvation is most frequently encountered clinically in gastrointestinal disturbances in infancy or pregnancy. Other circumstances in normal individuals in which excessive lipid and diminished carbohydrate are being metabolised may also lead to ketosis, e.g. renal glycosuria and abrupt replacement of a normal diet by one low in carbohydrate and very rich in lipid.

Clinically, the most important cause of ketosis is diabetes mellitus. In the diabetic individual, in contrast to the above situations, glucose is present in excessive amounts in the fluids of the body; however, the metabolic defect, viz., insulin deficiency, prevents glucose utilization from operating at a normal rate. From the point of view of the effect upon lipid metabolism, diabetes and starvation resemble one another.

In diabetic individuals with severe ketosis, urinary excretion of ketone bodies may be as high as 5,000mg/24 h and the blood concentration may reach 90mg/100ml, in contrast to normal values of less than 125mg and less than 3mg respectively.

Ketogenesis, from Principles of Biochemistry, 5th Edn, White A, Handler P, Smith EL. McGraw Hill, 1973, p577-578.

[NB: acetyl-CoA is also a precursor for cholesterol;
"The data suggest that, although acetyl-CoA is channeled towards ketone body formation in both diabetes and fasting, augmented cholesterol synthesis is evident only in diabetes." This suggests that the closer the diabetic diet gets to a ketogenic diet, the less cholesterol synthesis will be augmented - as does seem to be the case in practice.]

So what happens when a diabetic without insulin eats carbohydrate or excess protein?
As we saw in earlier posts, glucagon is released from pancreatic alpha cells in response to carbohydrate and protein. This elevates gluconeogenesis in the liver. Blood glucose is elevated by the meal and by GNG, and hyperglycaemia itself increases hepatic GNG further. Lipolysis is increased by the glucagon, so the liver has additional fatty acids to metabolize. Perfect conditions for ketogenesis to be enhanced above normal levels, because oxaloacetate is being extracted from the TCA in record amounts as this fat is being burned.

What happened when diabetics, in acidosis and without insulin, were switched to the Newburgh and Marsh ketogenic diet in 1923?
With no glucose and minimal protein to trigger glucagon, hepatic GNG is lower. With no glucose to add its load to hyperglycaemia, there is less portal hyperglycaemia to additionally drive GNG.
Less GNG = less ketogenesis.
And, as a bonus, it is likely that dietary fat has an inhibitory effect on lipolysis that is independent of hormonal controls. As long as it's saturated, or not polyunsaturated - in 1923, endocrinologists favoured butter as a source of fat.

Beef tallow diet decreases beta-adrenergic receptor binding and lipolytic activities in different adipose tissues of rat.
Matsuo T, Sumida H, Suzuki M. Metabolism. 1995 Oct;44(10):1271-7.

The effects of dietary fats consisting of different fatty acids on lipolytic activity and body fat accumulation were studied in rats. Sprague-Dawley male rats were meal-fed an isoenergetic diet based on either beef tallow or safflower oil for 8 weeks. Lipolytic activities in epididymal and subcutaneous adipose tissues were lower in the beef tallow diet group than in the safflower oil diet group. Body fat accumulation was greater in rats fed the beef tallow diet versus the safflower oil diet. Norepinephrine (NE) turnover rates used as an index of sympathetic activities in adipose tissues were lower in the beef tallow diet group. beta-Adrenergic receptor binding was determined with [3H]dihydroalprenolol. Binding affinities of beta-receptors in adipose tissues were significantly lower in the beef tallow diet group. Membrane fluidities of adipose tissues were also lower in the beef tallow diet group. Membrane fluidities were correlated with the affinities of the beta-receptor. We believe from these correlations that the decreases in beta-receptor binding affinities are due to the changes in membrane fluidities. The results of the present study suggest that intake of the beef tallow diet promotes body fat accumulation by reducing lipolytic activities resulting from lower beta-receptor binding and sympathetic activity in adipose tissues.

Dr Bernstein describes the mechanism of DKA differently; he doesn't consider that the liver is the main source of ketones, or that gluconeogenesis drives ketogenesis. His description addresses the pathology of DKA well, but not I think the early links in the chain of causality. Perhaps the difference is that he is describing the failure of insulin to work, and I am describing the long-term absence of insulin. But we are both agreed; dietary carbohydrate is the cause of DKA in diabetics.

"Furthermore, the higher your blood sugars go, the more insulin resistance you will experience. The more insulin-resistant you are, the higher your blood sugars are going to be.

A vicious circle. To make the circle even more vicious, when you have high blood sugars, you urinate—and of course what happens then is that you get even more dehydrated and more insulin-resistant and your blood sugar goes even higher. Now your peripheral cells have a choice—either die from lack of glucose and insulin or metabolize fat. They’ll choose the latter. But ketones are created by fat metabolism, causing you to urinate even more to rid yourself of the ketones, taking you to a whole new level of dehydration."
See also

Edit: here's a bit more on starvation, from this book
After about 3 days of starvation, the liver forms large amounts of acetoacetate and d-3-hydroxybutyrate (ketone bodies; Figure 30.17). Their synthesis from acetyl CoA increases markedly because the citric acid cycle is unable to oxidize all the acetyl units generated by the degradation of fatty acids. Gluconeogenesis depletes the supply of oxaloacetate, which is essential for the entry of acetyl CoA into the citric acid cycle. Consequently, the liver produces large quantities of ketone bodies, which are released into the blood. At this time, the brain begins to consume appreciable amounts of acetoacetate in place of glucose. After 3 days of starvation, about a third of the energy needs of the brain are met by ketone bodies (Table 30.2). The heart also uses ketone bodies as fuel.

And diabetes:
Because carbohydrate utilization is impaired, a lack of insulin leads to the uncontrolled breakdown of lipids and proteins. Large amounts of acetyl CoA are then produced by β-oxidation. However, much of the acetyl CoA cannot enter the citric acid cycle, because there is insufficient oxaloacetate for the condensation step. Recall that mammals can synthesize oxaloacetate from pyruvate, a product of glycolysis, but not from acetyl CoA; instead, they generate ketone bodies. A striking feature of diabetes is the shift in fuel usage from carbohydrates to fats; glucose, more abundant than ever, is spurned. In high concentrations, ketone bodies overwhelm the kidney's capacity to maintain acid-base balance. The untreated diabetic can go into a coma because of a lowered blood pH level and dehydration.

Note for future research: Mammals can synthesise oxaloacetate from pyruvate, but what if this step depends on insulin (which suppresses ketogenesis) and the conversion of pyruvate to acetyl-CoA doesn't?
The diabetic hepatocyte is swamped with glucose, it can't resist metabolising it, and 65-85% of the carbon from this glucose is recycled as GNG glucose.
What if this glucose, without the guiding hand of insulin, is, like fatty acids, a poor source of oxaloacetate and a good source of acetyl-CoA? After all, its metabolism is not suppressing ketogenesis - the opposite seems to be true.
Ketone bodies for use by heart muscle in normal hepatic metabolism are produced from glycogen, according to the first text I quoted.
So - is glucose itself a ketogenic substrate under certain conditions?
The quest continues...

Sunday, 1 February 2015

The Guinea Pig Model of Atherosclerosis

This is the kind of research that doesn't get as much attention as it used to.
Animal models are vital ways of testing theories that it would be unethical to test on humans, and when theories or novel chemicals are tested on unsuspecting humans, we refer to those humans as "guinea pigs". Not mice, rabbits, rats or any other rodent, but cavia porcellus. The guinea pig was used by Lavosier to demonstrate, by melting snow around his calorimeter, that respiratory gas exchange is a combustion, and by Pasteur, Roux, and Koch in their germ experiments, but fell into neglect at the end of the 20th century: only 2% of laboratory animals in the USA are currently guinea pigs.

In the early history of the lipid hypothesis, the rabbit model of atherosclerosis was developed by Anitschkow in 1911:

"When fed fat and cholesterol, rabbits develop high TC levels and subsequent fatty deposits in their blood vessels. When cholesterol is taken out of their diet, TC levels generally reduce and the fatty deposits may regress. If not used as conclusive evidence as to the process in humans, such experiments are said to be supportive of the theory that under conditions of high TC, cholesterol is more likely to be deposited in human arteries."[1]

The amount of cholesterol fed in these experiments - 0.2% or 0.25% of dry matter - probably exceeds what a human could consume, and of course rodents in nature have a minimal exposure to dietary cholesterol. The lesions seen do not correspond exactly to human atherosclerosis, and the role of saturated and unsaturated fats, or of foods like butter, with regard to progression in rabbits does not always match the lipid hypothesis predictions.

In 2006 Maria Luz Fernandez and Jeff Volek published a paper which should have stirred things up:
"Carbohydrate restricted diets have been shown to reduce plasma triglycerides, increase HDL cholesterol and promote the formation of larger, less atherogenic LDL. However, the mechanisms behind these responses and the relation to atherosclerotic events in the aorta have not been explored in detail due to the lack of an appropriate animal model. Guinea pigs carry the majority of the cholesterol in LDL and possess cholesterol ester transfer protein and lipoprotein lipase activities, which results in reverse cholesterol transport and delipidation cascades equivalent to the human situation. Further, carbohydrate restriction has been shown to alter the distribution of LDL subfractions, to decrease cholesterol accumulation in aortas and to decrease aortic cytokine expression. It is the purpose of this review to discuss the use of guinea pigs as useful models to evaluate diet effects on lipoprotein metabolism, atherosclerosis and inflammation with an emphasis on carbohydrate restricted diets."[2]

Rats and rabbits, on the other hand, don't resemble humans in the way they disburse lipids. The LDL fraction is tiny, they lack CETP and lipoprotein lipase, and generally diverge from human measurements in ways guinea pigs, it seems, don't. Even though rabbits and guinea pigs have pretty much the same natural diet - grasses, and their own poop. Guinea pigs and humans, unlike rats and rabbits, also can't synthesise vitamin C. Is there an orthomolecular connection here?
OMG put that pig on statins stat!
Long story short, guinea pig lipids react to lipid lowering drugs, PUFA and fibre in the same way and via the same mechanisms that produce effects in humans. If you feed a guinea pig cholesterol, fat, and carbohydrate it gets atherosclerosis. If you feed the guinea pig a very low carbohydrate diet (20%E SFA in these experiments - 10%CHO,65%FAT,25%PRO ) it's protected from cholesterol-induced atherosclerosis and inflammation. If you feed it a low-fat diet (55:20:25) the atherosclerotic syndrome progresses [3].

Most recently, the low carb diet reverses the metabolic alterations induced in guinea pigs by high-cholesterol feeding: the high-carb diet doesn't.

"Higher concentrations of total (P < 0.005) and free (P < 0.05) cholesterol were observed in both adipose tissue and aortas of guinea pigs fed the HC compared to those in the LC group. In addition, higher concentrations of pro-inflammatory cytokines in the adipose tissue (P < 0.005) and lower concentrations of anti-inflammatory interleukin (IL)-10 were observed in the HC group (P < 0.05) compared to the LC group. Of particular interest, adipocytes in the HC group were smaller in size (P < 0.05) and showed increased macrophage infiltration compared to the LC group. When compared to the H-CHO group, lower concentrations of cholesterol in both adipose and aortas as well as lower concentrations of inflammatory cytokines in adipose tissue were observed in the L-CHO group (P < 0.05). In addition, guinea pigs fed the L-CHO exhibited larger adipose cells and lower macrophage infiltration compared to the H-CHO group."[4]
Why the guinea pig is such a good model is explained by Maria Luz Fernandez in this 2001 paper, which predates her collaboration with Jeff Volek.[5]
Researchers at our laboratory and other investigators have found that guinea pig cholesterol metabolism does indeed have some analogies to human cholesterol metabolism that merit discussion.
Some of these similarities include the following:
  1. Guinea pigs have high LDL-to-HDL ratios (Fernandez et al. 1990a).
  2. They have higher concentrations of free than of esterified cholesterol in the liver (Angelin et al. 1992).
  3. They have plasma cholesteryl ester transfer protein (CETP)2 (Ha et al. 1982), lecithin-cholesterol acyltransferase (LCAT) (Douglas and Pownell 1991) and lipoprotein lipase (LPL) (Olivecrona and Bengsston-Olivecrona 1993) activities for intravascular processing of plasma lipoproteins.
  4. They exhibit comparable moderate rates of hepatic cholesterol synthesis (Reihner et al. 1990) and catabolism (Reihner et al. 1991).
  5. Similar to humans, the binding domain for the LDL receptor differentiates between normal and familial binding defective apolipoprotein (apo)B-100 (Corsini et al. 1992).
  6. Apo B mRNA editing in the liver is negligible (Greeve et al. 1993)
        7. They require dietary vitamin C (Sauberlich 1978).       
         8. Females have higher HDL concentrations than males (
Roy et al. 2000).
         9. Ovariectomized guinea pigs have a plasma lipid profile similar to that of postmenopausal women (
Roy et al. 2000).         
         10. During exercise in guinea pigs, plasma triacylglycerol (TAG) decreases and plasma HDL cholesterol (HDL-C) increases (
McNamara et al. 1993).
           11. Guinea pigs respond to dietary interventions (
Fernandez and McNamara 1992b1992a and 1995aHe and Fernandez 1998a) and drug treatment (Berglund et al.1989Hikada et al. 1992) by lowering plasma LDL cholesterol (LDL-C)

What we have here is a story of good science that should be better known. Maria Luz Fernandez develops the modern guinea pig lipoprotein model, Jeff Volek recognises its value for testing the carbohydrate hypothesis of atherosclerosis and the safety of LCHF diets, and Fernandez sees the value of such testing in adding to our knowledge of cardiovascular disease and lipid and carbohydrate contributions to inflammation.

[1] Flaws, Fallacies and Facts: Reviewing the Early History of the Lipid and Diet/Heart Hypotheses, Elliot J 2014. Food and Nutrition Sciences. Vol.5 No.19, October 2014 link

[2] Guinea Pigs: a suitable animal model to study lipoprotein metabolism, atherosclerosis and inflammation. Fernandez ML and Volek J. 2006  Nutrition and Metabolism 3:17 doi:10:1186/1743-7075-3-17 link
[3] Low-carbohydrate diets reduce lipid accumulation and arterial inflammation in guinea pigs fed a high-cholesterol diet. Leite JO et al. 2009 Atherosclerosis. 2010 Apr;209(2):442-8. doi: 10.1016/j.atherosclerosis.2009.10.005 link

Cholesterol-induced inflammation and macrophage accumulation in adipose tissue is reduced by a low carbohydrate diet in guinea pigs. Aguilar D. et al. 2014 Nutr Res Pract. 2014 Dec;8(6):625-631  link
Guinea Pigs as Models for Cholesterol and Lipoprotein Metabolism. Fernandez, ML 2001 J Nutr. Jan 1 2001 Vol 131 no.1 10-20 link