Search This Blog

Tuesday, 14 March 2017

The role of silicon in health and disease - is this the whole grain deficiency syndrome?

You can say what you like about whole grains, but their bran provides an excellent means of concentrating the element silicon from the soil in an absorbable form.
Silicon is required for the cross-linking of proteoglycans, the heavily glycosylated protein structures that give tissues as diverse as hair, nails, cartilage, bones, and aortas their resilience.
"The major biological function of proteoglycans derives from the physicochemical characteristics of the glycosaminoglycan component of the molecule, which provides hydration and swelling pressure to the tissue enabling it to withstand compressional forces."[1]

With this in mind, you'd think that conventional nutritionists would make more of whole grains as a source of silicon. Heck, you'd think they'd make something of it. But to do that would involve, first, acknowledging that silicon is an essential mineral in humans, which seems to have become one of those too-long-delayed "consensus" calls where no-one wants to be the odd one out. And secondly, it would involve recognising that fibre of the bran type may be conditionally beneficial for reasons that have nothing to with its effect on the microbiome, and that aren't specific to whole grains at all.

The advantage of considering the silicon hypothesis, for the whole grain nutritionist, is that it may provide an explanation for inconsistencies in the evidence for the fibre hypothesis, in that populations deficient in silicon from other sources may benefit from added fibre, while silicon-replete populations may not, and that grains grown in low-silicon soils may be less beneficial.

Klaus Schwarz (1914-1978 - he had discovered the essentiality of selenium in 1957) pioneered the study of silicon cross-linking in 1973.[2] In 1977, in The Lancet, after studying the association between the silicon content of drinking water in Finland with cardiovascular disease, Schwarz proposed that the silicon content of fibre was responsible for its correlation with cardiovascular disease.[3] Here's the abstract.

"A logical argument can be made for the hypothesis that lack of silicon may be an important aetiological factor in atherosclerosis. As silicic acid or its derivatives, silicon is essential for growth. It is found mainly in connective tissue, where it functions as a cross-linking agent. Unusually high amounts of bound silicon are present in the arterial wall, especially in the intima. Various kinds of dietary fibre have been reported to be effective in preventing experimental models of atherosclerosis, reducing cholesterol and blood-lipid levels, and binding bile acids in vitro. Exceptionally large amounts of silicon (1000 to 25 000 p.p.m.) were found in fibre products of greatly varying origin and chemical composition which were active in these tests. Inactive materials, such as different types of purified cellulose, contained only negligible quantities of the element. It is concluded that silicate-silicon may be the active agent in dietary fibre which affects the development of atherosclerosis. Two out of three samples of bran also had relatively low levels, which could explain why bran does not lower serum-cholesterol. The fact that atherosclerosis has a low incidence in less developed countries may be related to the availability of dietary silicon. Two instances are presented where silicon is reduced by industrial treatment: white flour and refined soy products were much lower in silicon than--their respective crude natural products. The chemical nature of silicon in different types of fibre is not known. It could exist as orthosilic acid, polymeric silicic acid, colloidal silica (opal), dense silica concentrations, or in the form of organically bound derivatives of silicic acid (silanolates). Possible mechanisms of action are discussed."

In a letter to the Lancet that same year, Schwarz and colleagues (including two researchers from the Finnish Heart Association) proposed that different levels of silicon in drinking water between West and East Finland are a factor in the different rates of heart disease between those populations.[4]
Water in West Finland had a silicon content of 7.73 +/- 0.53 mcg/ml (range 4.40-12.20), whereas water from East Finland had a silicon content of 4.80 +/- 0.27 mcg/ml (range 2.46-7.62). Schwarz's Finnish colleagues, as well as other Finnish researchers, found a similar difference in the magnesium and chromium content of the two water supplies, and that copper levels in East Finland were much higher than in the West.[5,6] CHD deaths in East Finland up to this period were about double those in the West, of course this difference was a subject of the famous 7 Countries study. We also know today that the rate of ApoE4 allele is significantly higher in the Eastern population.

The Finnish dietary change that is credited with reducing CHD incidence, most markedly in Eastern Finland, of course included an increased intake of whole grain fibre and bran, as well as the increased use of other foods grown outside Eastern Finland, as well as the reduced consumption of sugar and highly saturated animal fats. Food grown in New Zealand probably has a low silicon content due to the prevalence of volcanic rocks (for this reason New Zealand soil, like that of Eastern Finland, is very low in selenium, but unlike in Finland crop supplementation has not been used to correct this).[7] Data about silicon in New Zealand food or water is not available, but the silicon content of the water from volcanic lakes in New Zealand can be lower than 0.1 mcg/ml, too low to support diatomic life, which requires silicon to synthesise the frustule cell wall.[8]

I became interested in silicon while trying to understand why some people, but not others, on low carb grain-free diets report weak nails that break easily. Silicon supplements in the form of horsetail (equisetum) extracts, as well as collagen, are the usual recommendations, so what were the best dietary sources? Definitely grains. Oat bran comes out on top; of course, if you're not coeliac you can include this in low carb cooking. Bean pods (green or runner beans) are a good source. Spinach too. But as silicon is incorporated into cartilage and bone and recognised as essential for chicken growth, bone broth is a good source for carnivores, and as it supplies hydrolysed collagen probably also reduces silicon requirements. Beer is an excellent source, if you like low carb beer, as of course is mineral water.[9,10] Dandelion, nettle, oatstraw and horsetail are cheap herb teas very high in silicon.
As a general rule, hard water, and the hard parts of plants and animals, are where silicon is concentrated. Silicon is another line of evidence supporting the idea of bone and connective tissue as "animal fibre".

Are there any experimental tests of the idea? Silicon supplements definitely improve the resilience of hair and nails in humans.[11] In animals, silicon protects cholesterol-fed rabbits from atherosclerosis, but not cholesterol-fed ApoE knockout mice.[12,13] But - is there any evidence that fibre prevents atherosclerosis in such extreme models, apart from the effects of specific fibres such as chitosan on cholesterol absorption?

On reading Schwarz's papers and corresponding with him, Bassler wrote in a letter to the BMJ,[14]

"Our interest in the "Schwarz hypothesis"
was stimulated by his analysis of hair samples
from cardiac patients (unpublished observations).
We submitted samples from cardiac
patients, marathon runners, and patients who
were in exercise rehabilitation programmes.
Some cardiac patients who were disabled by
musculoskeletal injuries during training had
"very low" levels of hair silicon (under 4 ppm).
Normal levels were found in champion
marathon runners (over 20 ppm). Patients who
were supplementing their diets with bran and
alfalfa had elevated levels (up to 100 ppm).
These results suggest that silicon is the
"hard water factor" and the "food fibre
factor." We now advise cardiac patients to
increase their fibre intake until their stools
float. To date 102 cardiac patients have
"graduated" from rehabilitation programmes
by running 42 km.
Tabashir - a plant based opal formed from silicates in bamboo stems

What is interesting about this observation is that a normal barrier to exercise, susceptibility to connective tissue damage on running, appears to have been reduced by silicon supplementation.

We don't seem to know much more about silicon and CVD than we did in Schwarz's day; but we can be sure that CVD risk has decreased everywhere as the micronutrient content of the diet has improved, as non-seasonal and distant food sources have increased, which would be expected to improve silicon distribution, and as people have been encouraged to eat more whole foods; whereas, it is still high in individuals eating a high percentage of calories from nutrient-depleted foods such as sugar, flour, and oil.

Here's a Provisional Database of silicon in foods in UK Diet.[15]


[1] Yanagishita M. Function of proteoglycans in the extracellular matrix. Acta Pathol Jpn. 1993; 43(6):283-93.

[2] Schwarz K. A Bound Form of Silicon in Glycosaminoglycans and Polyuronides. Proceedings of the National Academy of Sciences of the United States of America. 1973;70(5):1608-1612.

[3] Schwarz K. Silicon, fibre, and atherosclerosis. Lancet. 1977; 26;1(8009):454-7.

[4] Schwarz, K, Ricci BA, Punsar S, Karvonen MJ. Inverse relation of silicon in drinking water and atherosclerosis in Finland. Lancet i., 538-539 (1977).

[5] Karppanen H, Pennanen R, Pasinen L. Minerals, Coronary Heart Disease and Sudden Coronary Death. Adv. Cardiol. 1978; 25:9-24.

[6] Punsar S, Karvonen MJ. Drinking Water Quality and Sudden Death: Observations from West and East Finland. Cardiology 1979; 64:24-34.

[7] Alfthan G, Eurola M, Ekholm P et al. Effects of nationwide addition of selenium to fertilizers on foods, and animal and human health in Finland: From deficiency to optimal selenium status of the population.  J Trace Elem Med Biol. 2015;31:142-7. doi: 10.1016/j.jtemb.2014.04.009. Epub 2014 May 20.

[8] Pearson LK, Hendy CH, Hamilton DP. Dynamics of silicon in lakes of the Taupo Volcanic Zone, New Zealand, and implications for diatom growth. Inland Waters. 2016; 6(2), 185–198.

[9] Sripanyakorn S, Jugdaohsingh R, Dissayabutr W, Anderson SHC, Thompson RPH, Powell JJ. The comparative absorption of silicon from different foods and food supplements. The British journal of nutrition. 2009;102(6):825-834. doi:10.1017/S0007114509311757.

[10] Jugdaohsingh R, Tucker KL, Qiao N et al. Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the Framingham Offspring cohort. J Bone Miner Res. 2004 Feb;19(2):297-307. Epub 2003 Dec 16.

[11] Jurkić LM, Cepanec I, Pavelić SK, Pavelić K. Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy. Nutrition & Metabolism. 2013;10:2. doi:10.1186/1743-7075-10-2.

[12] Loeper J, Goy-Loeper J, Rozensztajn L, Fragny M. The antiatheromatous action of silicon. Atherosclerosis. 1979 Aug; 33(4):397-408.

[13] Jugdaohsingh R, Kessler K, Messner B, et al. Dietary Silicon Deficiency Does Not Exacerbate Diet-Induced Fatty Lesions in Female ApoE Knockout Mice. The Journal of Nutrition. 2015;145(7):1498-1506. doi:10.3945/jn.114.206193.

[14] Bassler TJ. Hard water, food fibre, and silicon. British Medical Journal. 1978;1(6117):919.

Powell JJ, McNaughton SA, Jugdaohsingh R et al. A provisional database for the silicon content of foods in the United Kingdom. British Journal of Nutrition. 2005; 94, 804–812.

Further resources:
Silicon for French speakers:


wellnesswish said...

Do you think this has implications for keratoconus being degeneration disease of cornea?

George Henderson said...

Wow, I suppose that's possible. Proteoglycans are antioxidant in the eye.

The corneal endothelium likewise has augmented quantities of antioxidants to additionally safeguard more posterior ocular structures. The enzymes superoxide dismutase (SOD), catalase, glutathione peroxidise, nicotinamide adenine dinucleotide phosphate (NADPH) cytochrome P450 reductase, haem oxygenase-1, aldehyde dehydrogenase-3A1 and transketolase are the principal high molecular weight antioxidants in the cornea, along with the low molecular weight molecules α-tocopherol, ascorbate, ferritin, serum albumin and proteoglycans which deactivate reactive entities in a non-catalytic manner.

Stromal scarring manifests from a reparative response and causes haze from light scattering,[107, 108] while covalent bonding disruptions in stromal matrix collagen and proteoglycan molecules may precede disorganisation and aggregation of the collagen fibres.

Direct exposure to tetramethysilicate vapours can cause keratoconus

wellnesswish said...

thank you for feed back.

Bob said...

Great post and totally unexpected. Silicon an essential mineral? Please!

I checked my multivitamin / mineral supplement and no silicon (selenium, yes). As I live in a hard water area (Southern California), and I drink tap water for the presumed magnesium benefit, I checked my city's water quality report. No mention of silicon, so the city doesn't test for it. I have one toenail with a split in it that I have to trim carefully when it grows out, but other than that I have no indication of "silicon deficiency" as the post describes. My nails are certainly not brittle overall. I am a low-carber eating very few grains, but I make soup periodically from home-prepared bone broth, so maybe I'm "okay".

You do find some interesting stuff.

George Henderson said...

Hi Bob,

I have to say that this is the most convincing medical hypothesis that no-one knows about that I've ever come across.

Think of all those healthy high-carb diets we hear about - they'll be full of silicon from either whole grains or root vegetables. Then other populations eating high-carb from monoculture crops (where silicon level, or level of any mineral not needed by plants, which also includes the vital selenium, is never a concern) or refined versions which have lost their Si are not healthy. Of course there are many other factors here - Mg, Se, and vit C and E (which can't be supplied by fermentation the way the B vits can), Sulfate - but we know and care about these.
If your water is high Mg it's probably high Si too. If you can see a total mineral or dissolved solids count for the water, most of this unaccounted for solid will be silicates.

Information on the Si content of foods is not very comprehensive, nor consistent, probably because it depends on area so much. Bone density correlates with both silicon intake, positively, and CVD negatively, see the Framingham paper I referenced for the former.

I believe the mechanism is the point #2 in Schwarz's paper; silicon is essential for proteoglycan resilience of blood vessels in the face of haemodynamic stress. Bill Stehbens proved that haemodynamic stress alone could cause atherosclerotic lesions in the sheep. His sheep were New Zealand sheep and may have had relatively low Si intakes (for sheep) as well as low Se (a known fact). But in any case low Si = poor resilience and structural integrity, plus hemodynamic stress, are my candidate factors for the "original sin" injury to the intima to which the lipid and inflammatory cascade, dysregulated by insulin, is the consequence.
Low ascorbate would make this even more likely, explaining why CVD peaked in the 1950s when refined food intake was at a maximum relative to supplementation.

Anyway, Klaus Schwarz was a genius, and a very careful scientist. He wrote (I found a revealing essay by him in google books) how once he discovered the silicon hypothesis he found that others had had the same idea before him; this is usually a good sign. His discovery of silicon cross-linking just put the mechanism in place.
And then he died, of a stroke in 1978, the year after he published his hypothesis; some of my refs show it is still being kept alive, just, but not at all in the militant form it deserves.

George Henderson said...

Just to bookmark this, here is Klaus Schwarz's full review on silicon

Passthecream said...

Very interesting George, as always, and makes a lot of sense.

But I have always had thin fingernails, so thin I could never play guitar unaided by picks. Contrarily, when I changed to low carb eating with much lower fibre intake there was an increase in nail thickness which I could see as a ridge slowly growing out, about double the previous thickness.

So there may be an insulin or blood sugar factor as well???

George Henderson said...


yes some people definitely report nails becoming stronger on LCHF and there are a number of possible reasons
- malabsorption issues with grains depleting other minerals and vitamins needed for nail formation
- water used by eg coca cola is filtered so half flouride is removed - this may well remove silicon as well, if so switching to other drinks improves silicon uptake
- effects of insulin resistance on protein synthesis
- higher collagen intake from animal foods
- effect of better antioxidant status and reduced oxidative stress on protein breakdown
- effect of less PUFA on integrity of lipids in structures

Passthecream said...

Most of those things ring true for me except the coke, errk. I will add some equisetum tea to my intake and see if that has an additional benefit.

George Henderson said...

Sorry PTC I accidentally deleted your comment about phytates and oxalates.
Phytic acid has some beneficial aspects, it can be absorbed, chelates iron, and is a source of inositol. It takes very high levels of fibre in diets void of nutrient dense animal foods for phytate to be a problem I think, whereas oxalate is a toxin and people can be sensitive to it, with adverse effects, as with salicylates - but then salicylates can thin the blood and be beneficial too - plants, nature's pharmacy even before you get to the druggy ones.

George Henderson said...

Some updates are in order
1) rats can survive on very low Si concentrations (at least in terms of bone density) because they can conserve Si. This doesn't mean that higher intakes aren't needed to prevent CVD as rats don't have a massive vasculature and aren't naturally prone to CVD, also the micronutrient triage theory of Bruce Ames would apply - skeletal strength is essential for procreation, freedom from atherosclerosis isn't.

2) Following the above research, a mammalian silicon transporter has been discovered - published Feb 2017

note the interaction with phosphorous - sugar sweetened sodas are notorious for their content of phosphoric acid. "Cherry phosphate"

3) I found data for my tapwater - 14 ppm. This is typical of the Auckland area which is rainwater run-off mixed with a few springs. Rainwater or melted snow, typical of rural water supplies, would have almost no silicon content.

George Henderson said...

Atherosclerosis. 2001 May;156(1):67-72.
Red wine, dealcoholized red wine, and especially grape juice, inhibit atherosclerosis in a hamster model.
Vinson JA, Teufel K, Wu N.

With respect to wine, it is known that Si is taken up by the
grape vines, and some is transferred to the grapes, but little is
known about the balance between endogenous Si and Si from
other sources in determining the final Si concentration of wine
(Blaich & Grundhofer, 1997). For example, the presence of Si in
wine may also be due to the spraying of the grapes with potassium
silicate to control powdery mildew before harvest or due to the
use of clarifying agents, such as bentonite and colloidal silica
gel (EC Council, 1999; Cabras & Angioni, 2000)

From the UK provisional database.

French wine, used in the hamster paper, has 200 ppm silicon; the grape juice was Welch's Concord, silicon content unknown.

So what about beer, the drink highest in silicon (usually, though maybe not as high as French wine).?

At the high dose (1/2-diluted beer) both lager and dark beer significantly inhibited atherosclerosis compared to a control of 2% alcohol. At the high dose, lager significantly decreased cholesterol and triglycerides, and both beers acted as in vivo antioxidants by decreasing the oxidizability of lower density lipoproteins. At the low dose (1/10-diluted beer) only the lager beer significantly decreased atherosclerosis compared to the 0.4% alcohol control.

The makers of DB beers in New Zealand are up with the fact their product supplies silicon

However - a lot of beer was drunk during New Zealand's CVD epidemic. Obviously other factors were important, and if you end up with a beer belly, even a craft beer belly, all bets are off. Silicon is just one thing we need to throw in the mix to understand the atherogenic milieu.

Passthecream said...

Your point 2 above is interesting wrt Si versus P, phytate being a prominent source of P. I haven't read the whole paper yet since I couldn't open the file, but interesting to note that eg almonds have about about 9% phytate content and not much silicon while oats have very little phytate but high silicon.


Passthecream said...

Also, interesting that the original phosphate mix in those sodas included a lot of bone ash. A good source of minerals such as Ca, P and Si etc.

George Henderson said...

I'd forgotten about all the phosphorous in phytate.

Another important effect of silicon is that it competes with aluminium for uptake in the kidney and the brain.

This is a good thing. Chris Exley is on the case -

(Aluminium in brain tissue in familial Alzheimer’s disease)

Silicon-rich mineral water as a non-invasive test of the 'aluminum hypothesis' in Alzheimer's disease.

Now, isn't ApoE4 associated with both CVD and AD? And high in Finland? Hmmn.

Anuj Agarwal said...

Hi George,

My name is Anuj Agarwal. I'm Founder of Feedspot.

I would like to personally congratulate you as your blog The High-fat Hep C Diet has been selected by our panelist as one of the Top 20 Hepatitis C Blogs on the web.

I personally give you a high-five and want to thank you for your contribution to this world. This is the most comprehensive list of Top 20 Hepatitis C Blogs on the internet and I’m honored to have you as part of this!

Also, you have the honor of displaying the badge on your blog.


George Henderson said...

Thanks Anuj,

I appreciate the recognition and I've uploaded the badge and a link to your Top 20 Hepatitis C Blogs page on my site.
I've also pinned the post that summarises the point of this blog best for people with Hep C who visit from your page,